PRÁCE V SPSS program pro zpracování dat

Adriana Řeháčková www.statistickyneklasicky.cz

Práce v programu SPSS

V tomto materiálu si ukážeme základní práci v programu SPSS, která poslouží primárně ke zpracování statistických dat. Naučíme se základní ovládání programu, ukážeme si jak testovat hypotézy, s čím je potřeba pracovat a co je nutné ověřit.

O TOMTO MATERIÁLU:

Žádná část tohoto materiálu nesmí být nijak použita či reprodukována bez písemného svolení autora.

Copyright ©Statistickyneklasicky 2019

Autor materiálu: Adriana Řeháčková Sazba a grafické úpravy: Adriana Řeháčková

PRÁCE V SPSS

ZÁKLADY

Data vkládáme uspořádaná ve sloupcích (první sloupec jméno respondenta, druhý věk, třetí počet získaných bodů,...)

Nejjednodušší cesta je data zkopírovat z excelu a vložit do **Data view** (strana co máte otevřenou), případně použít **File – Open – Data** a vybrat požadovaný soubor.

Na data můžeme koukat dvěma způsoby:

Detailní pohled na data umožňuje záložka **Data View** a informace o proměnných najdeme v záložce **Variable View**. Na této záložce je možné proměnné přidávat, mazat nebo měnit jejich pořadí.

PARAMETRY

name = pojmenování (nutné bez diakritiky a mezer)

type = string (textové proměnné)

numeric (číselné proměnné)

width = počet písmen/číslic maximálně.

decimals = počet desetinných míst

label = popis proměnné.

values = pouze u kvalitativních proměnných; určují, co znamenají kódy (0 = žena, 1 = muž)

missing = zadá se sem to, s čím nemá databáze pracovat.

measure = typ proměnných:

scale (kvantitativní proměnné) ordinal (kvalitativní proměnná; dá se určit pořadí) nominal (kvalitativní proměnná; nelze určit pořadí)

UŽITEČNÉ FUNKCE

seřazení veličiny -> DATA -> SORT CASES

- ascending (vzestupně), descending (sestupně)

rozdělení databáze, aby byly pohromadě veličiny dle kritéria -> DATA -> SPLIT FILES

vybrání části databáze -> DATA -> SELECT CASES

 veličiny, které nejsou vybrány, budou proškrtnuty a databáze je nebude brát v potaz. Dá se zde vybrat výběr podle nějaké podmínky (if) například věk > 30 a nebo je i možnost zcela

náhodného výběru, zde si jen vyberete kolik % hodnot chcete nebo i konkrétní velikost vzorku.

vypočítat novou veličinu -> TRANSFORM -> COMPUTE VARIABLE

- zde se zadá, co s čím se má sečíst, odečíst, apod. a dále, name a label pro novou veličinu

udělat graf -> GRAPHS -> CHART BUILDER

- nejdříve zvolit typ grafu, poté jakou/jaké veličiny chceme v grafu znázornit

- graf se zobrazí v Outputu a po dvojkliku (označení) jej lze upravovat

PŘEKODOVÁNÍ

Doporučuji dávat do SPSS data z Excelu už přepsaná, například když v dotazníku někdo bude zaškrtávat jestli je žena nebo muž, tak pak to rovnou přepsat ve formu žena = 0, muž = 1 (nebo klidně naopak, ať tu není diskriminace (). To samé, když někdo bude vybírat "vždycky, občas, nikdy" – potom (vždycky = 1, občas = 2, nikdy = 3).

Když máme taková data v SPSS, doporučuji přiřadit číselným kódům jednotlivých položkek textový popis. To je možné vidět a upravovat v záložce Variable View ve sloupci Values. Po kliknutí do buňky ve sloupci Values a řádku kategoriální proměnné se zobrazí dialog.

Value Labels Value: 2	Spelling
Label: muž	
Add Change Remove	
OK Cancel Help	

4

CHARAKTERISTIKY

popis proměnné – průměr, medián, apod. -> ANALYZE -> DESCRIPTIVE STATISTICS -> <u>EXPLORE</u>

- zde se zadá, pro jakou proměnnou se to počítá (*dependent list*), popřípadě můžeme rozdělit dle např. pohlaví (*factor list*) – to je může udělat i přes *Split files*.

četnost proměnných -> ANALYZE -> DESCRIPTIVE STATISTICS -> FREQUENCIES

- zde se zadá, pro jaké proměnné se má četnost počítat

- lze tu zjistit modus – nejpočetnější znak – a jeho hodnotu

srovnání proměnných ->ANALYZE->DESCRIPTIVE STATISTICS -> DESCRIPTIVES

 - jednoduše popíše proměnnou; počet, průměr, min, max a směrodatná odchylka, můžeme si vybrat co všechno chceme zobrazit v možnostech **options**.

- vhodné pro porovnávání např. mezi muži a ženami

```
Mean = průměr
Median = prostřední znak
Variance = rozptyl (s<sup>2</sup>)
Std. Deviation = směrodatná odchylka (s)
Range = variační rozpětí (R)
Minimum
Maximum
```

Variační koeficient – musí se dopočítat; = (směrodatná odchylka / průměr) * 100 - když je zadán rozptyl, musí se odmocnit, protože rozptyl je s² a směr. odch. je s.

TESTOVÁNÍ NORMALITY

Testování normality je nezbytný předpoklad pro výběr vhodného typu testu (parametrické = mají normální rozdělení, neparametrické = nemají normální rozdělení).

Postup je následující: -> ANALYZE -> DESCRIPTIVE STATISTICS -> <u>EXPLORE</u> A do pole DEPENDENT LIST vybereš proměnnou, kterou chceš testovat a následně do FACTOR LIST můžeš zvolit zde ji chceš podle něčeho třídit (například vyberu v dependent list výsledky z testů a ve factor list pohlaví, tím získám testy za každé pohlaví zvlášť.

U normality platí, že pokud je **sig (p-hodnota) menší než 0,05**, tak data **nemají normální rozdělení** (zamítáme H0, která hovoří o normalitě) a pokud je **větší než 0,05**

Explore	ta Explore: Plots	Х	×
kód před Studijní Podíl úč	Boxplots Descriptive ● Factor levels together ▼ Stem-and-levels together ○ Dependents together ▼ Histogram ○ None ■	eaf	Statistics Plots Options
	 ✓ Normality plots with tests ✓ Spread vs Level with Levene Test ● None ○ Power estimation 		<u>B</u> ootstrap
Display <u> </u> Both C	 ○ <u>Transformed Power:</u> Natural log ○ <u>U</u>ntransformed <u>Continue</u> Cancel Help 	~	

potom data **mají normální rozdělení**. Rovněž si zobrazíme histogram, kde se můžeme i vizuálně vidět, zda se data chovají podle Gaussovy křivky (mají normální rozdělení) nebo ne.

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

- máme testy parametrické a neparametrické

PARAMETRICKÉ TESTY

- podmínkou je normální rozdělení

- jednovýběrové, dvouvýběrové a vícevýběrové testy (1 / 2 / více výběrových souborů)

JEDNOVÝBĚROVÉ TESTY

-> ANALYZE -> COMPARE MEANS -> <u>ONE SAMPLE T-TEST</u>

 vloží se proměnná z databáze, kterou chceme porovnávat, testovat ji a do Test value zadáme hodnotu, s kterou chceme porovnávat.

vyjede tabulka, ze které zjistíme-> t= testové kritérium; sig.(2 tailed)= p

1) formulace nulové H_0 a alternativní hypotézy H_1

 H_0 = shoda; předpoklad je shodný se skutečností / H_1 = alternativa; skutečnost se s předpokladem neshoduje

2) volba hladiny významnosti α, většinou 0,05

3) Výsledek sig (2 tailed (p-hodnota))nám řekne, zda H0 zamítáme nebo nezamítáme, je-li phodnota větší než hladina významnosti, potom zamítáme H0, jestliže není větší, tak nezamítáme H0.

4) Zamítáme H0 – existuje statisticky významný rozdíl mezi předpokladem a skutečností.

6

DVOUVÝBĚROVÉ TESTY

- dělí se na závislé výběry a nezávislé výběry
 - závislé když jsou dva sledované parametry na sobě závislé (1 student -> 2 testy)
 párový t-test -> ANALYZE -> COMPARE MEANS -> <u>PAIRED</u>

<u>SAMPLES T-TEST</u>

 vloží se obě porovnávané proměnné, tak aby tvořily pár. Musí jich tedy být stejný počet.

• nezávislé – používá se, když dva parametry na sebe nemají vliv (porovnání pohlaví)

-> ANALYZE -> COMPARE MEANS -> *INDEPENDENT SAMPLES*

 napíše se testová proměnná -> to, co zjišťujeme (test variable) a proměnná, podle které se porovnává -> to, podle čeho se proměnné dělí (grouping variable), pak se definují kódy (co se skrývá pod 1, co pod 2)

💼 Independent	-Samples T Test	\times
	The Define Groups X	Options
🗞 kód předn 🔗 podíl účas 🔗 průměrná	<u>U</u> se specified values Group <u>1</u> : <u>Group 2</u> : <u>Cut point:</u>	Bootstrap
	Continue Cancel Help]
(OK Paste Reset Cancel Help)

Leveneho test pro zjištění variability (rozptylu)

-> zjistí se, jestli mají hodnoty stejné nebo odlišné rozptyly.

 test nám H₀ zamítne nebo nezamítne a to má vliv na konečné řešení (ukazuje, který údaj z tab. použijeme)

-> když se nezamítne, použije se první řádek "assumed"

-> když se zamítne, použije se druhý řádek "not assumed"

poté se použije dvouvýběrový test (postup zápisu znovu jako u jednovýběrového), ale
 všechna data, která potřebujeme, jsou již obsažena v tabulce po výpočtu Leveneho testu
 Když se zjišťuje jen shoda rozptylu, použije se pouze výsledek Leveneho testu.

Leveneho test

1. formulace nulové H₀ a alternativní hypotézy H₁

 $H_0: \sigma_1{}^2 = \sigma_2{}^2 \qquad \qquad H_1: \sigma_1{}^2 \neq \sigma_2{}^2$

2. volba hladiny významnosti α

α = 0,05

- 3. Výpočet v SPSS
- 4. Rozhodnutí o zamítnutí nebo nezamítnutí nulové hypotézy -> p > α -> H₀ (nezamítnutí)
- interpretace statistického rozhodnutí Neexistuje statisticky významný rozdíl v kolísání hodnot v průměrné době dojížďky mezikluky a holkami.

VÍCEVÝBĚROVÉ TESTY – ANALÝZA ROZPTYLU

- předpokládá se normální rozdělení a homogenita rozptylů (Levene test by měl potvrdit H₀)

- porovnává se m průměrů, kde m > 2
- provede se test pro ANOVU -> ANALYZE -> COMPARE MEANS -> ONE-WAY ANOVA

 vloží se proměnná, která se bude testovat (Dependent list) a proměnná, podle které se kritéria dělí (Factor)

 následně se klikne na možnosti (Options) a zde se zaškrtnou popisné charakteristiky (Descriptive) a test shody rozptylů (Homogenity of variance test)

- zobrazí se tři tabulky -> potřebujeme jen druhou a třetí
- v první jsou popisné charakteristiky pro jednotlivé skupiny (Descriptives)
- druhá zobrazuje test shody rozptylů, což je test nulový hypotézy (H₀) u Leveneho testu
 - zde zjistíme testové kritérium L a p-hodnotu, podle které H₀ ne/zamítneme
- ve třetí je test nulové hypotézy (H₀) průměrů

- zjistíme testové kritérium F a p-hodnotu, podle které H₀ ne/zamítneme

 pokud nulovou hypotézu zamítneme, znamená to, že mezi danou trojicí (čtveřicí, pěticí, atd.) neexistuje shoda, musí tedy následovat podrobnější vyhodnocení

NEPARAMETRICKÉ TESTY

- není nutná znalost tvaru rozdělení zkoumané veličiny, data nemusí mít normální rozdělení.

- použitelnost pro znaky kvantitativní i kvalitativní (ordinální data)
- charakteristická je výpočetní jednoduchost, avšak je zde menší síla testů

DVOUVÝBĚROVÝ SOUBOR

- <u>nezávislé výběry Mann-Whitneyův U test</u>
 - neparametrickou obdobou (ekvivalentem) dvouvýběrového t-testu pro dva nezávislé výběry

testuje se hypotéza, že dva nezávislé výběry o rozsazích *m* a *n* pocházejí ze stejného základního souboru (z populací se stejným mediánem)
 -ANALYZE->NONPARAMETRIC TESTS -> LEGACY DIALOGS -> 2 INDEPENDENT
 SAMPLES můžeš si vybrat, který test chceš provést a výsledná tabulka nabídne p hodnotu a testové kritérium *Z*.

- závislé výběry Znaménkový test nebo Wilcoxonův test
 - neparametrická obdoba párového t-testu pro dva závislé výběry
 - ověřujeme, zda se dva závislé výběry významně liší svou polohou
 - znaménkový test má menší sílu

ANALYZE->NONPARAMETRIC TESTS -> LEGACY DIALOGS -> 2 RELATED SAMPLES může se vybrat, který test chceme provést a výsledná tabulka nabídne p hodnotu a testové kritérium *Z*.

VÍCEVÝBĚROVÝ SOUBOR

použije se <u>Kruskal-Wallisův test</u> (jde o neparametrický ekvivalent analýzy rozptylu)
 test nulové hypotézy, že m nezávislých výběrů s rozsahy n₁, n₂, ... n_m pochází z téhož

rozdělení

ANALYZE->NONPARAMETRIC TESTS -> INDEPENDENT SAMPLES

ANALYZE->NONPARAMETRIC TESTS -> LEGACY DIALOGS -> K INDEPENDENT SAMPLES může se vybrat, který test chceme provést a výsledná tabulka nabídne p hodnotu a testové kritérium Z.

Korelační analýza

Z menu **Analyze** vybereme **Correlate** a následně **Bivariate**. Do pole **Variables** přeneseme obě proměnné (absenci, věk). V nabídce Correlation Coeffiecients označíme **Pearson** (musí být splněný předpoklad normality, ten ale už víme jak ověříme).

Z výsledků nás potom zajímá hodnota Pearsonova koeficientu.

Další věc, kterou musíme posoudit, je statistická významnost (uvedená jako Sig. 2 tailed). Ta nám určuje, jak moc se můžeme na získaný výsledek spolehnout. Signifikance (významnost) by neměla překročit standardní p-hodnotu 0,05.

9

		MAKS	MICA
MAKS	Pearson Correlation	1	,313
	Sig. (2-tailed)		,003
	N	89	89
MICA	Pearson Correlation	,313**	1
	Sig. (2-tailed)	,003	
	Ν	89	89

Pořadová korelace

Používá se tehdy, když máme daná pořadí. Například pořadí podle vzhledu a pořadí podle oblíbenosti.

Analyze – Correlate – Bivariate. Do pole Variables vložíme obě proměnné (vybavenost, výdaje). V nabídce Correlation Coeficients zaškrtneme Spearman.

Zajímá nás hodnota **Spearmanova koeficientu** a další věc, kterou musíme opět posoudit, je statistická významnost (uvedená jako Sig. 2 tailed). Ta nám určuje, jak moc se můžeme na získaný výsledek spolehnout. Signifikance (významnost) by neměla překročit standardní p-hodnotu 0,05.

Korelační matice

Korelační matici získáme, když dáme **Analyze – reggresion – Linear** a zde si rozklineme **Statistics**...a nyní již stačí zaškrnout **Descriptives**

tinear Regression: Statistic	cs X
Regression Coefficien	 Model fit R squared change Descriptives Part and partial correlations Collinearity diagnostics
 Durbin-Watson Casewise diagnostics Outliers outside: All cases 	3 standard deviations
	Cancel Help

Lineární regrese

Máme jednu závislou a jednu nebo více nezávislých proměnných.

Můžeme se podívat na graf: **Graphs – Legacy Dialogs – Scatter/Dot.** Zpravidla platí, že x je nezávislá proměnná a y je závislá proměnná.

Pokud chceme použít pokročilejší metody regresní analýzy, nabídku vyvoláme z menu: **Analyze – Regression – Linear**. V dialogovém okně lineární regrese zvolíme závislou – **Dependent** (letos) a nezávislou – **Independent(s)** (loni) proměnnou, potvrdíme OK.

Model Summary				
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,648 ^a	,420	,420	59,966

Vyjede na nás podobná tabulka z které můžeme pomocí korelačního koeficientu vyčíst sílu a směr závislosti, dále máme koeficient determinace, který nám řekne kolik % variability se daným modelem podařilo vysvětlit a upravený koeficient determinace, ten slouží po porovnání více modelů.

			Coefficients	а		
		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	-20,828	3,306		-6,300	,000
	vek v letech	2,147	,075	,335	28,458	,000

Následně můžeme vidět hodnoty konstanty a regresního koeficientu, vedle následně máme hodnotu významnosti, podle které rozhodneme jak statisticky významný regresní koeficient a konstanta jsou.

Jiné regresní funkce

Opět stačí jít přes **Analyze – Regression** a zde **Curve Estimation** potom do pole **Dependent** vybrat závislou proměnnou a do pole **Independent** nezávislou proměnnou. Zároveň si zde můžete vybrat jaké modely (funkce) má program vytvořit, následně pak zvolíme ten nejvhodnější model, zpravidla podle **upraveného koeficientu determinace**.

Dependent(s):	S <u>a</u> ve
□ Independent	
Case Labels: Include constant in equation Models	
✓ Linear ✓ Quadratic Compound Growth ✓ Logarithmic ✓ Cubic S Exponential ✓ Inverse ✓ Power: Logistic Upper bound:	
Display ANOVA table	

